
Q.2 a. Determine the current in a circuit as shown in Fig.1, when the switch 's' is closed at t=0. Assume there is no initial charge on the capacitor or current in the inductor



#### **Answer:**

Q.3 a. Find the Laplace transform of any function that repeats itself.

### **Answer: Page Number 306 of Text Book**

Q.4 a. State Reciprocity theorem and check whether the circuit shown in fig.3 obeys reciprocity theorem

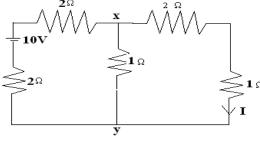
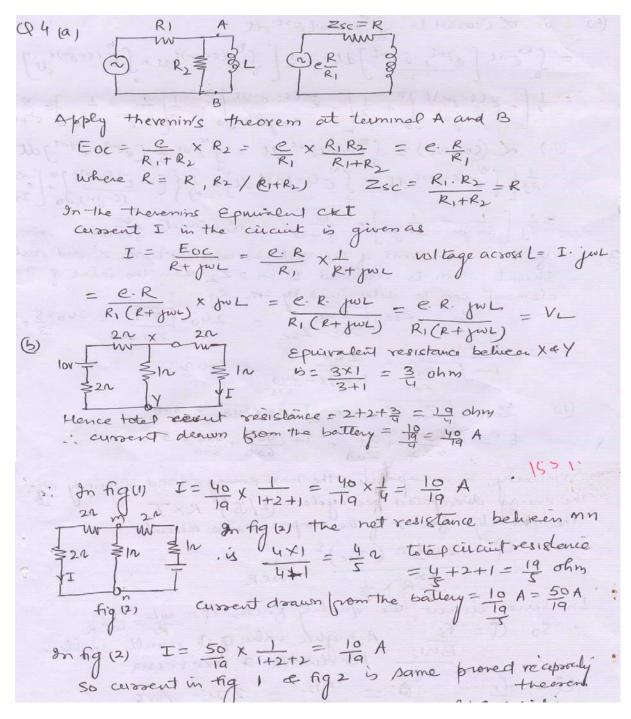




Fig.3

b. State and prove the substitution theorem.

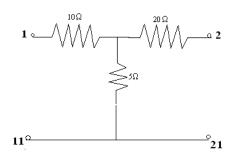
#### **Answer:**

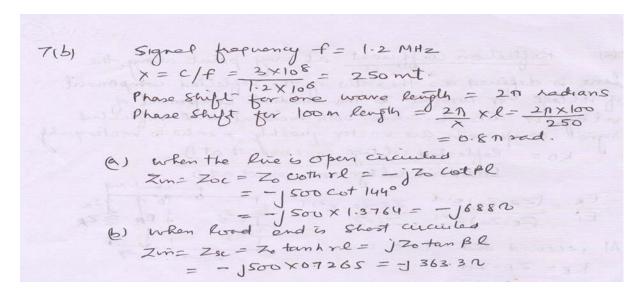


**Q.5** a. The z-parameter for a 2-port network are  $Z_{11}$ =30 $\Omega$ ,  $Z_{22}$  = 40 $\Omega$ ,  $Z_{21}$  = 20 $\Omega$ . Find the equivalent T network.

# **Answer: Page Number 512 of Text Book**

b. For the given 2 port network calculate ABCD. Parameters and image impedances.





Fig.4

## **Answer: Page Number 523 of Text Book**

- **Q.7** a. Explain the following
  - (i) Reflection coefficient
- (ii) Secondary line constants
- b. A transmission line connects a transmitter of 1.2 MHz to the aerial located 100m away from it. If  $Z_0$  of the lines be equal to 500 $\Omega$ . What is the input impedance of this line if antenna end is a) open circuited b) short circuited.

### **Answer:**

(b) a propagation content are commonly to propagation contents are commonly to propagation contents the secondary of the sectors important of the sectors of



- **Q.8** a. What is stub? Explain the different type of stub matching used in transmission lines.
  - b. Derive the relation between VSWR ('S') and Reflection coefficient ('K').

### Answer:



$$|V_{max}| = |V_{i}| + |V_{R}| \qquad K = \frac{|V_{R}|}{|V_{i}|}$$

$$|V_{min}| = |V_{c}| - |V_{R}| \qquad |V_{r}| = \frac{|V_{c}| + |V_{R}|}{|V_{min}|} = \frac{|V_{c}| + |V_{R}|}{|V_{i}| + |V_{R}|} = \frac{|V_{c}| + |V_{R}|}{|V_{i}|}$$

$$= \frac{|V_{c}| + |V_{c}|}{|V_{i}| + |V_{R}|} = \frac{|V_{c}| + |V_{R}|}{|V_{i}|}$$

$$= \frac{|V_{c}| + |V_{R}|}{|V_{i}| + |V_{R}|} = \frac{|V_{c}| + |V_{R}|}{|V_{i}|}$$

$$= \frac{|V_{c}| + |V_{R}|}{|V_{c}| + |V_{R}|} = \frac{|V_{c}| + |V_{R}|}{|V_{c}|}$$

$$= \frac{|V_{c}| + |V_{R}|}{|V_{c}| + |V_{R}|} = \frac{|V_{c}| + |V_{R}|}{|V_{c}|}$$

$$= \frac{|V_{c}| + |V_{R}|}{|V_{c}| + |V_{R}|}$$

$$= \frac{|V_{c}| + |V_{C}|}{|V_{c}| + |V_{C}|}$$

$$= \frac{|V_{c}| + |V_{c}|}{|V_{c}|}$$

$$= \frac{|V_{c}| + |V_{c}|}{|V_{c}|}$$

$$= \frac{|V_{c}|$$

## **Text Books**

- 1. Network Analysis; G. K. Mittal; 14th Edition (2007) Khanna Publications; New Delhi
- 2. Transmission Lines and Networks; Umesh Sinha, 8th Edition (2003); Satya Prakashan, Incorporating Tech India Publications, New Delhi